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1. I n t r o d u c t i o n  

In this paper we study some interesting ideas from D. Arnon's MIT PhD thesis 

[1] written under the supervision of M. Hopkins. Arnon defines two versions of 

completion. He completes the Steenrod algebra A with respect to its halving 

homomorphism to obtain A~ and studies the process of attaching square roots 

to each polynomial in the Dickson algebras Dn in n variables ([4]) over F2. The 

resulting algebra D ~  is a free root algebra on Dickson's generators. Once this is 

done, the resulting Dickson algebras form an inverse system, and the limit D, /  
,/ 

contains the free root algebra on the top Dickson classes, here denoted D/i n. 
Hu'ng [5] shows that the completion (A~)* of A* (the graded horn-dual of A, [8l) 

,/ 
with respect to its squaring map is isomorphic to D/~ n. We observe that DJi n 

carries a natural coproduct and the isomorphism described by Hu'ng is in fact 

an isomorphism of Hopf algebras. As Hu'ng notes, the halving homomorphism 

in A and the squaring map in A* are dual but their completions are not of finite 

type, so we cannot deduce that hOmF: (A~, F2) ~=A~. 

The Dyer-Lashof algebra R and a related less well-known algebra W are com- 

pleted with respect to their halving homomorphisms. Two new completed Hopf 

algebras graded over N[½] are obtained which are denoted R~ and W~. The Dyer-  

Lashof algebra R has extra structure when compared to A - -  a decomposition 

by length into canonical subcoalgebras R[n]. It is well-known that R[n]* ~ Dn; 
see, for example, [3, 7, 10]. We have canonical subcoalgebras n[n]~ and W[n], 

~ * to • ---- D . There is a similar result relating W[n]~ as well and we obtain R[n]~ 
the ring of upper triangular invariants [2, 9] which is here denoted H~ .  

Finally, just as Arnon forms an inverse limit of the Dickson algebras, we form a 

direct limit of the coalgebras R[n]~ with respect to a map 0 to obtain a coalgebra 

R. .  We have (Theorem 4.9) that R .  ~ D,/  together with a similar result for 

W.  . Coupled with Hu'ng's result, we may conclude, rather surprisingly, that  

contains a subalgebra isomorphic to A~. 

This paper is written over the finite field F2. The paper is organized as follows. 

In §2 we collect classical necessary material from the literature and the work of 

Arnon. We extend his study to the upper triangular case. In §3 we apply Arnon's 

ideas to the Dye~Lashof  and a related algebra. In the last section, we detail the 

theorems described above. The paper is more or less self-contained, but we 

imagine many readers will want to refer to [i] and [51. 

ACKNOWLEDGEMENT: We thank F. Peterson for his advice and the editor for 

making this paper readable. The second author wishes to express his gratitude 



Vol. 114, 1999 COMPLETING THE DYER LASHOF ALGEBRA 
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2. G e n e r a l i z e d  D i c k s o n  a n d  c e r t a i n  s u b a l g e b r a s  

Let P~ = (]~t>o(Pn)t denote the graded polynomial algebra F2[y l , . . . , y~ ]  

equipped with the usual actions of G~ = GL, (F2)  and the Steenrod algebra 

A, where the degree of yi (here denoted by lYil) is 1. Two important  rings of 

invariant polynomials are considered. Let Un C G~ be the subgroup consisting 

of upper triangular matrices and V/ be the vector space with basis {Yl , . . . ,  Yi}- 

Let 
i 

fi(t) H (t v) ~ 2"-J = - -  = d j , i t  . 

v C  V i  j=O 

Observe that  the coefficients dj,i are invariant under GI(V/) and that  Idj,il = 
2 i - -  2 i-j. Define hi = fi-l(yi)  and note Ihil = 2 i-1. 

THEOREM 2.1 ([4, 9, 11]): Hn := pu,, = F2[hl , . . . ,h ,~]  and Dn := P 2 "  = 

f 2 [ d l , n , . - - ,  d n , n ] .  

The algebra Dn is known as the Dickson algebra. 

Arnon considers the Frobenius map d: Pn -+ Pn given by d(f) = f2 and studies 

a kind of "mapping telescope" of functions such as d. In the first instance one 
1 needs a degree preserving map, so we define a map still called d: P~ --+ ~P~ where 

1 now (~Pn)t = (Pn)2t" In general, let 2kPn = (~ (Pn)2_k t such that  2 -k t  ~ N. 

Let us consider 1 ~Pn and P~ as algebras graded over Z[ 1] with the latter algebra 

0 in fractional and negative degrees. Now d is a degree-preserving map and by 

iterating the construction just given one extends 

and obtains the direct limit 

d: 2 ~  pn_+ 1p. _ ~ n 

; P~,d . 

We note that  the algebra P ~  has the property that  all elements have square 

roots. For example, Yl C (1/2t)pn is the 2t-root of Yl. 

De~nition 2.1: A root algebra A is a Z[1]-graded commutat ive algebra over F2 

1 defined by d(x) x 2 is where the degree preserving homomorphism d: A --+ ~A = 

an isomorphism. 
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PROPOSITION 2.2: Pff  is a f ree  r o o t  algebra on its generators. 

Proof: Let Yn = { Y l , . . . ,  Yn} and R be a root algebra (R contains more than 

1 isomorphism) with f :  Y~ --> R a map of one element and d: R -+ ~R is an 

sets. We show that  3! E: Pff  -+ R which extends f .  Let (Yi)t E (1/2t)pn. 

Define F(y i ) t  : (yi,t) such that dt(y i , t )  : ( ( fYi ) ) t  and extend to an algebra 

. . . .  Y~ )t r such that dr(r) • Y n  ) t ,  w e  • = = map. For a monomial (y;1 ~ have F(y~ ~ i~ 
(yi' ""Y~ )t- This is well defined because of the compatibility of the squaring 

map. Suppose F(y i )  = G(yi)  -- f ( y , ) .  Then F(y i )  2~ = G(yi)  2~ ~ (F(yi)t)  2~ = 

(G(yi) t )  2t ::~ d tE(y i ) t  -- d tG(yi) t  ::~ F(y i ) t  : G(yi) t .  d: Pn v/ -+ l_pJ  is an 2 n 

isomorphism. II 

Arnon goes on to discuss the action of GL~(F2) as grade-preserving algebra 

automorphisms of P~ .  Let 

Definit ion 2.2: (a) Let 

Sl+...+Sn=m, 
s~=O or 2 r l , r i E Z  

be the Peterson polynomial of degree m on n variables. Here m E N[½]. 

(b) Let 
= y ; i . . . y : o  

Sl-{-...-{-sn =m,sn:~O 
si=O or 2 r i  , r i E Z  

be the polynomial of degree m on n variables• Here m E N[½]. 

LEMMA 2.3: 

(i) The  Peterson polynomial  ~wm is a GLn-invariant  and nOra is its 

Un-invariant analogue. 

(ii) (nWm)2- - nW2,~. 

(iii) ,~w,~ = no.~+ n--lWm. 

(iv) ~W2~--2' = d~_i,~ and no2,-1 = hn. 

Proof: (i) The first claim has been proved by Arnon. Un is generated by ele- 

mentary matrices {(e~j) I J >- i}; eij (,~o~) = ,~o,~ + ~ y~'-- ,  y~ .  Here the sum is 

over the n-tuples ( t l , . . . ,  t~) such that t j  = O, ti = si + s j ,  and tq = sq otherwise. 

The last sum is zero over F~ because ,Om is symmetric• 

(iv) follows from the definitions. | 
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P R O P O S I T I O N  2.4 ([1]): 
/ x / \  GL~ 

(a) D f f - [ P ~ )  , n < oc. 

(b) Dff is the free root algebra generated by {nw2i_l [ 1 < i < n}, where 

nW2n-~_ 1 is the image  of di,n under the embedding of D~ in Dff  . 

/ VI\ GL,~ 
Proof." Let  09: ~P~ ) -+ Dff be given by (I)(f) = j t ( f t ) .  Here it: Pn -+ P~ ,  

jt: n n  -+ Dff  and  i t ( f t )  = f .  

Let  

~?t : 2t  n -'~ Pn  

be the  evident  m a p  which is an  isomorphism.  The  following d i a g ra m is commu-  

ta t ive:  
~ D n  d 1 - 4  2 t + 1 0  n 

$ $ 
" 1 -GL,~ (~p~)OLo - ,  ( ~ p ~ )  

Here the  ver t ica l  maps  are  qot and  ~ot+l, respectively.  I t  follows now tha t  ~5 is an  

i somorphism.  | 

S imi la r ly  we define 

:= \ 2  ) 

and the  GL~-ana logue  is ob ta ined .  

T.EORE~ 2.5 ([1]): Let ~ e N[½] a n d  ~ = 2 ~ - E ~  2 ~ ,  w h e r e  ~1 < " "  < ~ < 

N.  Then ~wm can be written as a polynomial in te rms of generators. 

nO)m ~-- E nO32Sl - - 2  r l  " n  ( a ) 2 s g - - 2 r t  • 
b b 

2 s 1 -{-... Jc2s~ : 2  N 
n>_si -ri>O 

P R O P O S I T I O N  2.6: U 

(ii) Hff  is the  free root algebra generated by { l o , . . .  ,n o}, where io is the image 

of hi under  the  embedding of Hn in Hff  . 

(iii) Let n E N[½]; then nOm can be written as a polynomial in terms of 

generators. 

Proof'. (iii) We suppose  t ha t  m is an integer,  o therwise  we mul t ip ly  by  a su i tab le  

power  of 2. Let  m = 2 N - ~-~ 2~;  then  a(m) = N - ~ - r 1 a n d / / ( m )  - ~  r 1. Let  
2 R 

r = n - a ( m ) ;  then  R :=  r l  + 1 - r is the  biggest  power of 2 such t ha t  Yn [nOm 
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2 ~ 2 R 2 ~ and no ]nom. Let nOm = ~O f ;  we compare the coefficients of Yn in bo th  
2 R sides: ~-lWm_2R = (n- lw2~-~- l )  f .  Now we use Arnon 's  theorem: 

n _ l ~ d m _ 2 R  Z 
2s0  + . . . + 2 s ~  = 2  N 

n - - l > a i - - r i >  0 

n - - l t a ) 2 ~ 0 - - 2 r o  " " " n - - 1  C O 2 s ~ - - 2 ~ e  • 

Since it is known how to express a Dickson generator in terms of upper  t r iangular  

generators,  we only have to show that  each summand  in the last sum is divisible 

by (n_lW2~-l_l)  2R. For this we consider the indices of w's. We require si - 

ri = n -  1 and ri = R + a for some positive integer a. This is equivalent to 

si = n -  1 + R +  a or s~ = N -  g -  1 + a  and the last holds because si _> N -  g. 
| 

For use later on, we consider the monomiaI  h r = h~ * . . .  h~ ~ C H ~  so tha t  I is a 

sequence of length n with entries from N[½]. There is a unique least t in N with 

the proper ty  tha t  J = 2 t I  is a sequence in N.  So each such monomial  h z E H ~  

uniquely determines the monomial  h J C ( 1 / 2 t ) H n  . 

Let ~n: Pn -+ P i n  - 1] be the degree-preserving algebra map defined on gener- 

ators by the rule ~n(Xi)  = xi  i f0  < i < n -  1 and ~n(Xn) = 0. Later,  we drop the 

subscript  for convenience. Let us observe from the definitions tha t  ~n(hi) = h~ 

for 0 < i < n 1, ~ ( h n )  0 while nn(d~,~) 2 - -  = = d i , n _  1 for 0 < i < n -  1, and 

a,~(dn,n) = 0. 

LEMMA 2.7: ,%(noo~)= n-1O0~. 

The following diagram is easily induced since Kn is compatible with d. 

. . . 4  D~+ 1 4 D ~  --+~'" 

The  sys tem above induces the following inverse limits and maps:  

p ~ / : =  ~ m _ ( P ~ , a ) , H ~  :=  <lim(H~' ~ ) a n d  D r '  :=  <lim(D~' a); 

p~/+-~ H~/+-~ D~/. 

A typical  element in one of these algebras can be described as follows. Let S 

be the set of sequences I = ( i l , i 2 , . . . )  with ik E N[½] and ik -- 0 for k > >  0. 
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Let Sk be the subset for which i j  = 0 when j > k. Given I E $ we write 

gI = iIkg~k- Consider an expression of the form [f = ~ I e s a I g I ]  " Write 

supp( f )  = {1 e 81a, > 0}. Then f defines an element of one of these algebras 

iff supp( f )  N Sk is finite for all k. 

Remark  2.1: H~ / is just the root algebra of l im(Hn,n) .  This is because +__- 

l im(H, ,  re) is an algebra on {hili > 1} of infinite series f such that  ten(f) E H~ /____ 
1 without using the Frobenius map d: H n -+ ~Hn+l. 

Let D~,~ be the free root algebra generated by {oow2~-1 In _> 1}. Here oow2~-1 

is a Peterson polynomial where any number of variables is allowed. Arnon notes 

that for fixed length ~w2,,-1 is finite (using the natural projections D 4  5g Dff). 

Let nit  be the ideal generated by {~w2,-1,. . . ,nw2~-1} for 1 < t < n. We 

consider {~It[1 < t < n} a basis for open sets at 0 in the vector space D~.  We 

give D,  / a topology such that all projections :r~ are continuous. This topology is 

induced by the following metric on D4.  Let # ( f )  be the lowest number n such 

that  7rn(f) ¢ 0. Define 
1 

d( f ,g )  - 
# ( f  - g)" 

A basis for open sets at 0 is given by the set of ideals 

{ <  0 3 2 t - 1 , C d 2 t + l _ l ,  " . . . . .  ~> [1 ~ t}. 

Let f E D , / a n d  define a sequence fk in D 4  as follows: 

supp(fk) = supp(f )  N ,-qk. 

It is obvious that the sequence above converges to f and its elements belong to 

D~,~. Hence, D 4  contains D~n as a dense subset. The same is true for the 

analogue of the U,~-invariants. 

Note: Let Au be the inverse limit of ( ~ A , # ) .  This vector space is considered 

as a topological space where a basis for open sets at 0 is given by {It l t  > 0}. 

Here It is the kernel of the projection ~t: A~ --+ ~A ,  namely: 

It = (0 , . . . , 0 ,  A -  A(2) ,A - A(2~),. . .) 

and A (2~) contains all elements with exponents divisible by 2 k. Each (1 /2 t )A  

is given the discrete topology. Suppose {2,~ = {Xm,n}} is a Cauchy sequence; 

hence Vt ~Nt such that 2m - x,~ C It Vm, n > N t .  If we define 2 = {xt} such 

that  xt is the summand of 2N, which contains elements of sequences divisible by 
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2 t, ..'~m converges to 2 under this topology and A~ is the completed Hopf algebra. 

Now, Dff inherits a continuous action of A~ which is compatible with the usual 

action of the Steenrod algebra on the Dickson algebra D~, [1]. The same is true 

for Hff .  This action extends on P , /  and hence on H, /  and D~/. It is easy to 

show that  this action is continuous. 

A number of authors [7, 3, 6] have studied a coproduct 

A: Dn ~ ~ Di ® Dj. 
iWj=n 

In particular, we have 

iq-j.~n 

D~,~ acquires the structure of a Hopf algebra which is compatible with Hence, 

the structure above. Namely, one can take a formula describing the effect of D 

on certain special elements in D,~ and copy it over to define a coproduct on D n 

as the following diagram suggests: 

II $ $ II 

Here, the general formula is used: 

A n ( d  . . . .  i) ---- d2~-k_2 j d2J k,k [61. 
i+j=n 

.We recall [8] that A* ~ F2[~1,~2,...] where I~l = 2~ - 1 with coproduct 

iTj~-n 

THEOP~EM 2.8: F2[d~,nln >__ 1] and A* are isomorphic as Hopfalgebras. 

Remark 2.2: The last theorem implies that D~n contains a sub-Hopf algebra 

which is isomorphic to the dual Steenrod algebra. 

3. The completed Dyer-Lashof algebra 

W'e recall here for completeness the definition of the Dyer-Lashof together with 

an auxiliary algebra of some independent interest. Many readers will already be 

familiar with this material. An excellent reference is [3]. 
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Let F be the free associative algebra on symbols {ff [ i > 0}, with [fi[ = i. 
Given a sequence I = ( i l , . . . ,  in) of non-negative integers we define the l eng th ,  

d e g r e e  and excess  of f t  : =  f i l  . . .  fin E F by g(fI) = n, IflI = it + . . .  + in 

and exc(f  I) = il - i2 . . . . .  in, respectively. We note that F is a Hopf algebra 

with coproduct defined on generators by the rule ¢ ( f f )  = ~-~j+k=i fJ ® fk .  
Let L be the two-sided ideal of F generated by the elements f t  of negative 

excess, and define W to be the quotient algebra F/L; we let e t denote the image 

of f '  in W. We take Wm to be the subspace of W spanned by {J[[eI[ = m}. 

We note that  W0 = F2[e°,e°e°, . . . ]  and we let Win] denote the subspace of W 

spanned by {e I [ Ig(e I) = n} with W[0] = F2. We have W = ~m_>0Wm = 

~n>O W[n]. It is easy to see that ~b gives W the structure of a Hopf algebra. 

We take L" to be the two-sided ideal of W generated by the A d e m  re la t ions :  

if r > 2s, 

e ~ e S + Z ( i - s - l ~  ~+8-i i 
2 i - r  ) e  e .  

The D y e r - L a s h o f  a l g e b r a  R is defined to be the quotient algebra W modulo 

the ideal generated by the Adem relations W / L  ~. The image of e I in R under 

the natural map 7r: W -~ R is denoted QX. An element QI (or I itself) is said to 

be admis s ib l e  if ie ~_ 2Q+1 for 1 < g < n - 1. The set {QI ] I is admissible} is a 

F2-basis for R. R is a Hopf algebra under the coproduct induced by ~b, namely 

on generators by ~b(Q ~) = ~ Qi-j  ®Qj, and if R[n] denotes ¢(W[n]) then R[n] is 

a connected subcoalgebra and R = (~n_>0 R[n] as a coalgebra. The product in R 

sends R[n] ® R[g] to R[n + g] and the elements Q i  i > 0 are all indecomposables. 

T~tEOREM 3.1 ([2, 3, 7, 10]): W[n]* ~- Hn and R[n]* "~ On as algebras over 

the Steenrod algebra. The first isomorphism sends (eI) * to h I', where 

I '  = (il -- ~ i t , . . . , i n - 1  -- in,in). 
2 

Following Arnon, we now consider the map it: F --+ F defined on generators 

by the rule 

#(f2i) = if ,  #(f2i+l)  = 0. 

The map tt can be extended to all of F by requiring that  tt be a map of a~lgebras 

and it is routine to check that # is a map of Hopf algebras. 

LEMMA 3.2: The map # induces Hopf algebra epimorphisms I~: W --+ W and 

#: R - ~  R. 
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LEMMA 3.3: The map j~: Win] -+ Win] is dual under the isomorphism described 

above to the squaring map d: Hn --~ Hn, and the same is true for #: R[n] --4 R[n] 

and d: Dn -+ Dn. 

Proof'. It suffices to prove the assertion for #: Win] -+ W[n]. The second 

assertion will follow from the commutativity of the diagram 

w[,q 

n[n] 

Let d*: H* TM W[n] --+ H* ~- W[n]. Let d*(fI ')  * -- d* e I (exponents are as in the 

theorem above). We evaluate the last element under f3: 

1 if I - -  2J  I 
fJ(d*(eI))  = d f J ( e I ) = - f 2 J ( e l ) =  0 otherwise ~ 

d, ei = ~ e I /2 I / 2  E N × . . .  × N, I 
( 0 otherwise. 

Arnon's idea is to study a kind of "mapping telescope" of the function #. In 

the first instance one needs a degree preserving map so let a map, still called 
1 1 #: ~F --+ F,  be defined where now (½F)n = F2n. Now consider ~F  and F as 

algebras graded over N[½] with the latter algebra 0 in fractional degrees. Both 

algebras are still Hopf algebras but now # is a degree-preserving map. Iterating 

the construction just given, obtain 

1 1 F #: ~ F - - +  

and consider the inverse limit 

Note that  an arbitrary element of Fu is an infinite sum of elements of the form 

f ( I / 2  e) = (( f ' r /2*)l , ( f /2* ~)2, , ( fz) t ,  2t 4I • " ( f ) t + l , (  f ) t + 2 , ' " )  

where I is a finite sequence of non-negative integers and we have written ( fz) t  

to indicate that  f1 E ~ F ,  t _> 0. Hence, we allow exponents from the set 

N[½] x - . -  x N[½] for any finite number of copies. So an arbitrary element f e Ft~ 

may be written as an infinite sum ~ t  f ( f t ) .  Note that  the sequences It  may vary 

in length. Now, F ,  becomes a completed Hopf algebra where the coproduct is 
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defined on f(I)  as ~ J + K = I  f (J)  ® f(K) (see [5]). Some care is required here. If 

one defines ( 1 1  ) 
we observe [5] that  

1 __ # )  F.@F. l~m_ ( ~ F  ® 1F 2 t ,#® . 

1 The map # induces an isomorphism of completed Hopf algebras #: ~ F .  -+ F .  

which maps f(I ,  t) to f(I ,  t+ 1). We define F.[n] in the obvious way and observe 

that  F.[n] = l~m_(F[n], # ) i s  a subcoalgebra of F . .  

We observe that  W., W.[n], t2. and Ruin] may be similarly defined and enjoy 

similar properties, since # preserves Adem relations and negative excess. It is 

also true that  p(e 2I) = e I. We have A(e(I) )  = ~ e(M) ® e(N). 
It is known that  A acts on R via Nishida relations and it follows in the sequel 

that  A~ also acts on R .  via Nishida relations. 

LEMMA 3.4: A. acts on R. via Nishida relations. 

Proof: It  suffices to show that  the following diagram is commutative: 

N i s h i d a  A @ R ~ R 

A @ R Nishida~ R 

This reduces to the statement 

- mod 2. 
2r - 2i r - i 

Note: Formulas for Adem relations and Nishida action are easily obtained. 

Next, we discuss the action of R ,  on a completed homology of an infinite loop 

space. 

The homology of an infinite loop space H.(QX) has a simple description over 

R, namely: it is an allowable R-Hopf algebra over a fixed homogeneous basis of 

H.(X) [3]. Let 

(tt.(QX)) ~/ :-- lim (~H.(QX),d)"  ___+ 

then R .  acts on (H.(QX)) ~/as follows: 
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Definition 3.1: Let fi E (H.(QX)) ~/ and Q(I) E R~. Let u,~ ¢ (1/2 ~) (H.(QX)) 
such that  u~ • ~(dn-1)  and fi = tin- For the exponent of Q(I) there exists a 

non-negative integer t such that  2tI is an integral sequence and t is the smallest 

with this property; let us label such a t by Q. We define 

,~2 ,~_ t i  Q(I)~ = ~¢ u,~, for t < n, 
0, f o r t  > n. 

PROPOSITION 3.5: The completed Hopf algebra R, acts on (H.(QX, Z2)) ~/. 

Proo~ Let Q e R , ;  then Q = ~ I Q ( I ) '  Let Q(n) := ~t,<_,~Q(I)" Here the 

summat ion  is over all summands Q(I) of Q such that  tr _< n. The definition above 

is extended by Q~ := ~ I  Q(I)ft. The last sum is finite because Q~ = Q(n)ft 
and hence the action is well defined. Here ~ E (H.(QX)) ~/ and un is as in the 

definition above. | 

4. The  cont inuous  dual  of  R~ 

In this section we consider the continuous dual of R ,  and its relation with the 

continuous dual of the completed Steenrod algebra Am. 
First, we decompose R ,  (Wt,) with respect to length: Let 

Rt'[n] = {Q = E Q(I)II has length n}; 
I 

then 

R, = ®R,i l(w, = @ w , i . l )  
n > 0  n>_0 

Definition 4.1: Let M be a Z2-graded topological vector space. Let M* be the 

graded vector space of Z2-valued homogeneous continuous functionals on M. 

Next, we define a scalar product between subspaces of R u and D~/. This 

scalar product  will provide the main tool to investigate the dual space of R~[n] 
and Wain ]. 

We shall note that  every element of R~[n] can be written uniquely in terms of 

{Q(1/2~)IIt >_ 0, I admissible, e(I) ~ 0,g(I)  = n}. The base for D ~  is the one 

which contains all monomials. 

Definition 4.2: Let e = ~g  bje(J) be an element of W~[n] and h = ~ I  alhI an 

element of ~/ Hn • For each J = ( j l , . . . ,  jn) define 

n 

g ' = ( j l - E j ~ , . . . , j n _ l - j , ~ , j n  ) and b~j,=bg. 
s : 2  
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The  scalar p roduc t  between Wt~[n] and H ~  is defined to be given by 

(e, h) = E b~ai. 
I 

Definition 4.3: Let Q = E j  bjQ(J)  be an element of R•[n] and d = E r  a1 d~ an 

element of Dff .  Each integral sequence 2 tJ J = 2 tJ ( j l , - - . ,  jn)  can be decomposed  
uniquely: 2 tJ J = ~ k~Ii where Ii = (2 n-1 - 2 i - 1 , . . . ,  2 n - i - 1  - 1 , 2 ~ - i - 2 , . . . ,  1) 

([3]). Define J '  = 2 - t J ( k l , . . . , k ~ )  and b~, = bj. The  scalar p roduc t  between 

R,[n] and D ~  is defined to be given by 

(Q, d} = ~ b~a,. 
i 

LEMMA 4.1: The scalar product is well defined and continuous. 

Proof." Let  h = E a ,  h z in H ~  and (en) be  a convergent sequence in W,[n]:  

en = ~-~bane an -+ e = }-~bde a. Thus, for any open I,~ there exists N such tha t  

( e n  - -  e) E I m  for n > N.  Let to = max{Qlai ~ 0 in h}. Let N be such tha t  

( e n -  e) E Ito+l for n > N.  But  this implies (en - e, h} = 0. | 

Let f C (Wu[n])* or (R,[n])*;  then the suppor t  of f is defined to contain all 

monomia l s  of Wt,[n ] or R,[n] such tha t  their  image under  f is non-zero. 

LEMMA 4.2: Let f e (Wt~[n])* or (R,[n])*; then the support o f f  is finite. 

Proo~ Since f :  W~[n] -+ Z2 is continuous, there exists m such tha t  Ve E I ,~(a 

basic open set) with ]e I = Ill implies f(e) = 0. Let x e W,[n] be a monomia l  

such t ha t  Ix] = Ifl and x ¢ Ira. x = e J (*) and g = ( ~ _ _ , j ~ , ~ n 2 j ~ , . . . , j l ) ,  

where j~ • N[½]. Hence, Ifl --- ~ = 1  sj~. Since x ¢ Ira, 2tj~ • N for some t _ m 

and 1 < s < n. Let  k~,t = 2tj~; then the equat ion 2tlfl  = ~ _ _ ~  sk~,t has only a 

finite number  of solutions. The  last set of solutions defines the suppor t  of f .  

Let  f • (R,[n])* and x = Q J  as above, ( .) .  Then  there exists t <_ rn such tha t  

2tg = ~ i  £~In,i is a sequence in N × . . .  × g .  As before 2till = ~ i k i (  2n - 2i) 

n 

has only a finite number  of solutions. | 

Now we are ready  to proceed to the key theorem of this section. 

THEOREM 4.3: The maps ~: H~ ~ (W.[n])* given by ~(h) = ( - , h )  and 
¢: D ~  -+ (n , [n] )*  by ¢(d)  = <- ,  d> are vector space isomorphisms. 

Proof'. I t  is obvious t ha t  the maps  defined above are monomorph i sms .  We 

must  show tha t  they  are onto. So, let f • (W~[n])* with Ill = d. We define 



202 H.E.A. CAMPBELL AND N. E. KECHAGIAS Ira. J. Math. 

V" f(ea~h J' h ( f )  = z..,ijl= d ~ j . Since the support of f is finite, h( f )  is well defined and 

~o (h( f ) )  (e) = f(e) .  The last statement is true, since it holds for any monomial 

e I. For the map ¢, the proof is identical. | 

The next propositions are directly deduced from the theorem above. 

PROPOSITION 4.4: (R,)* ~ ~[ D / a n d  (Wt,)* ~ H H / .  

PROPOSITION 4.5: R•[n] ~- and n ~- 

Proof: This is a consequence of properties of direct limits. 

THEOREM 4.6 ([5, theorem 3.7]): D ~  and A*~ are isomorphic as completed 

Hopf  algebras. 

In his proof of this theorem, Hu'ng shows that the completion of A* with 

respect to its squaring map is closely related to the graded hom-dual of Arnon's 

completion of the Steenrod algebra with respect to its halving map. Using the 

isomorphism between the Milnor basis and the top Dickson elements, one can 

show that the isomorphism above respects the underlined topologies. 

Our last task is to complete the completed Dyer-Lashof algebra with respect 

to the map 0: F[n] --+ Fin + 1] defined by the rule O(f I) = f(21,o). 

LEMMA 4 . 7 : 0  is a map of coalgebras and also induces a coalgebra map from 

W[,,] to Win  + 1] and R[n] to R[n + 11. 

Proof: The following diagram is commutative: 

0 __+ W[n] W[n + 1] 
A$ 

W[n] ® W[n] ~ W[n + ll ® W[n + l] 

Since 0 is compatible with excess and Adem relations, the second assertion 

follows. | 

It is just a diagram chasing to see that 6 and # are compatible in W and R. 

It follows therefore that we may take a direct limit of the system 

0 0 -+ . . .  -+ R,[1] R,[n] £ R,[n + 1] 

to obtain a coalgebra Rt,. 

PROPOSITION 4.8: The map 0": (R[n + 1]t,)* --+ (R[n]t,)*agrees with the map 

induced by ~: Dff+ 1 -+ Dff under the isomorphism of Theorem 3.1, 

The last proposition implies the following theorem. 



Vol. 114, 1 9 9 9  COMPLETING THE DYER-LASHOF ALGEBRA 203 

THEOREM 4.9: ~ H~/ and R~ ~ DV as algebras. 

Combining the last theorem with Theorem 4.6, the next corollary is obtained. 

4.10: (A~)* has an isomorphic dense image in ( ~ ) *  COROLLAaY 
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